Kommunális hulladékból származó biofrakció és RDF pirolízisének vizsgálata laboratóriumi körülmények között

Készítette:
Sebe Emese

Konzulens:
Dr. Kállay András Arnold

Tüzeléstani és Hőenergia Intézeti Tanszék
2018. november
Tartalom

1. Bevezetés ... 1

2. Kommunális hulladékok .. 2
 2.1. Szelektív gyűjtés ... 3
 2.2. Vegyes kommunális hulladék és a szelektív gyűjtés maradéka 3
 2.2.1. RDF ... 4
 2.2.2. Biofrakció ... 5

3. Hulladék hasznosítás .. 6
 3.1. Anyagában történő hasznosítás .. 6
 3.2. Energetikai hasznosítás ... 7
 3.2.1. Égetés .. 7
 3.2.2. Elgazosítás ... 9
 3.2.3. Pirolízis .. 9

4. RDF és biofrakció pirolizálásának áttekintése .. 10
 4.1. RDF pirolizálás ... 10
 4.2. Biofrakció pirolizálás ... 11

5. Kísérleti rendszer kialakítása ... 13
 5.1. Kísérleti rendszer felépítése ... 13
 5.2. Mérőkör kialakítása ... 14

6. Kísérleti eredmények ... 15
 6.1. Kísérletek bemutatása .. 15
 6.2. Alapanyag elemzés ... 16
 6.3. Alapanyag konverzió .. 18
 6.4. Gázhalmazállapotú termékek elemzése .. 19
 6.5. Szilárd és folyadék halmazállapotú termékek elemzése ... 24

7. Összefoglalás ... 26
Ábrajegyzék
1. ábra: Mechanikai-Biológiai Hulladékkezelés [4]... 4
2. ábra: A kísérleteim során alapanyagként alkalmazott biofrakció 5
3. ábra: Pirolizáló üzem, Egyesült Királyság ... 12
4. ábra: A kísérleti rendszer sematikus ábrája ... 13
5. ábra: A kísérletek során alkalmazott berendezés .. 16
6. ábra: Alapanyag pelletek (balról: RDF, biofrakció, keverék) 17
7. ábra: Alapanyag konverzió... 19
8. ábra: Kumulativ gáztermelés görbék.. 20
9. ábra: A reaktorcsövön mért T₁, T₂, T₃ és T₄ hőmérsékletek 20
10. ábra: A szintézisgáz összetétele, térffogatárama és a hőmérséklet alakulása (RDF) 21
11. ábra: A szintézisgáz összetétele, térffogatárama és a hőmérséklet alakulása (biofrakció) 22
12. ábra: A szintézisgáz összetétele, térffogatárama és a hőmérséklet alakulása (keverék) 23
13. ábra: Az összetevők aránya a maradékanyagokban, az alapanyagban lévő mennyiségekre vonatkoztatva .. 24
14. ábra: A gázzá alakult komponensek aránya ... 25

Táblázatjegyzék
1. táblázat: A minták összetétele ... 17
2. táblázat: A minták égéshője és fűtőértéke, száraz mintára vonatkoztatva 18
1. Bevezetés

A keletkező hulladékok mennyiségének folyamatos növekedése a 21. század egyik fő problémájává vált. Sajnos még ma is sokan választják a deponálást, mint hulladékkezelési módot, annak ellenére, hogy az integrált hulladékgyázdálkodási piramis alapján ez a leggrosszabb megoldás.

A hulladékhazonnosítási módok közül az anyagában történő hasznosítás részesítendő előnyben, ennek hiányában végezhető energetikai hasznosítás. Az újrahasznosításnak azonban alapvető feltétele a szelektív hulladékgyűjtés, de még így sem valósulhat meg minden esetben az anyagában történő hasznosítás. Ilyenkor gyakran az anyag deponálására vagy hulladékégetőben való megsemmisítésére kerül sor.

Jelenleg számtalan kutatás foglalkozik a korábban hulladékétőbe kerülő anyagok további hasznosításával. Az egyik legjelentősebb ilyen irányú törekvés a termikus hőbontás. A pirolízis előnye az égetéssel szemben, hogy a keletkező termékek tovább hasznosíthatók. Az eljárás paraméterei és kiinduló anyaga különsőségét szerepet játszanak a végtermék kialakulásában, ezért ezek vizsgálata áll dolgozatom középpontjában.

Szakirodalom kutatásomban a általam vizsgált hulladéktípusokat és a termikus eljárások főbb irányvonalait mutatom be, melyek közül a pirolízis folyamatát részletesen tárgyalom. Munkám célja a szilárd települési hulladékból származó biofrakció és RDF (Refuse Derived Fuel), illetve ezen anyagokból készült keverék pirolízisének vizsgálata laboratóriumi körülmények között. A kísérletekhez saját berendezést állítottunk össze, amelyről külön fejezetben írok a kísérleti körülményekkel együtt. A kísérletek során a kiindulóanyagok, termékek (szintézisgáz) és maradékganyagok (salak, kátrány) mennyiségét és összetételét vizsgálok, majd ezek szisztematikus összehasonlítását kivánom bemutatni. Az eredmények kiértékelésével és következtetésekkel zárom dolgozatom.
2. Kommunális hulladékok

A 2012. évi CLXXXV. törvény alapján hulladéknak minősül „bármely anyag vagy tárgy, amelytől birtokosa megváltozik, megválni szándékozik vagy megválni köteles” [1]. Keletkezési helyük alapján megkülönböztetünk:
- települési (vagy kommunális) és
- termelési hulladékokat is [2].

A települési hulladékok halmazállapot alapján lehetnek:
- települési szilárd hulladékok, vagy
- települési folyékony hulladékok (szennyvizek) [2].

A települési szilárd hulladékokhoz tartoznak a lakóépületek, közintézmények hulladékai, valamint az elhasznált, nagyméretű, tartós fogyasztási cikkek, ún. nagy darabos hulladékok [3].

A kommunális hulladékok anyagi összetétele rendkívül változatos, megtalálhatók bennük többek között szerves hulladékok, csomagolóanyagok, textil, elhasznált háztartási eszközök, kerti hulladékok és fűtésből származó hulladékok (salak, pernye, korom) is [4].

Míg a fejlett országokban a települési hulladékok jelentős részét értékes alapanyagként, másodnyersanyagként hasznosítják, hazánkban ennek közel 50%-a deponálásra kerül [5].

Együttkezelhetőség szempontjából a szilárd települési hulladékokat 3 fő hulladékcsoportra bonthatjuk: csomagoló anyagok (30-40%), biohulladékok (30-50%) és maradvány (10-30%) [5].

A kommunális hulladékok különböző szemcseméretű frakcióinak összetétele jelentősen eltér. Míg a biológiai lebontható rész a kisebb, mint 50 mm-es frakcióban dúsul, addig a papír és a műanyag több, mint 90 %-a a nagyobb, mint 50 mm-es szemcseméret-halmazban található. Ez magyarázza a különböző szemcseméret-frakciók eltérő fűtőértékét is [6].

Dolgozatomban részletesen a vegyes összetételű kommunális hulladékból származó biofrakciót és a kommunális hulladékból előállítható másodlagos tüzelőanyagot, az RDF-et kivánom bemutatni, mivel ezekkel végeztem pirolizálási kísérleteimet.
2.1. Szelektív gyűjtés

A szelektív hulladékgyűjtés célja, hogy az újrahasznosítható, a veszélyes és a biológiailag lebomló szerves hulladékokat elkülönítsék egymástól. Az elkülönített gyűjtés megvalósulhat házhoz menő gyűjtéssel, hulladékgyűjtő szigeteken, vagy hulladékudvarokban [4].

Tapasztalatok alapján még 100%-os lakossági együttműködés esetén sem lehet a hasznosítható hulladékok teljes mennyiségének visszagyűjtésével számolni. Optimális esetben a visszagyűjtési arányok:
- papír: 60-70%,
- műanyag: 30-40%,
- fémek: 80-90%,
- üveg: 60-70%,
- textil: 60-70%,
- veszélyes alkotók: 60-70% [7].

Ennek okai közé tartozik, hogy a hulladékok egy része erősen szennyezett, ez pedig alkalmatlanná teszi azokat az anyagában történő hasznosításra [7].

2.2. Vegyes kommunális hulladék és a szelektív gyűjtés maradéka

A települési hulladékok gyűjtésének hagyományos módja a vegyesen történő gyűjtés, amely során a különféle anyagú hulladékok már a keletkezés helyén ugyanabba a tárolóedénybe kerülnek. A vegyesen gyűjtött hulladék döntő részben még ma is lerakásra kerül [4].

Többnyire szintén ez a sorsa a szelektív gyűjtés után visszamaradó, ún. maradék hulladékoknak. Ez alapvetően nem veszélyes és anyagában nem hasznosítható hulladékokat (pl. hamu, cigarettaacsikk, pelenka) tartalmaz. Külön tárolóedényben gyűjti. Egyes településeken már bevezették, hogy a vegyes, maradék hulladéket tartalmazó kukákba chip-eket helyeztek és regisztrálták az üríttést (így csak a tényleges elszállításért kell fizetni). Ezáltal a lakosság ösztönözhető a szelektív gyűjtésre [4].

Nagyobb hangsúlyt kellene fektetni a szelektív gyűjtés során a biohulladék elkülönítésére, hiszen ez a hulladéktípus van jelen legnagyobb arányban a vegyes hulladékból, ráadásul könnyen és jól hasznosítható frakció [4].
2.2.1. RDF

Az RDF egy másodlagos tüzelőanyag, ami a kommunális hulladékok nagyobb fűtőértékű komponenseit tartalmazza [8].

Az RDF előállítására nem vonatkoznak szabványok, így két különböző helyről származó RDF minősége között jelentős különbségek lehetnek. SRF-nek (Solid Recovered Fuel) nevezzük azt a másodlagos tüzelőanyagot, amire meghatározott szabvány szerinti előírások vonatkoznak. Az RDF-et előállító technológiákat általában mechanikai-biológiai hulladékkezelési technológiának (MBH) szokás nevezni [9]. Az 1. ábrán látható egy általános MBH technológia vázlata.

![1. ábra: Mechanikai-Biológiai Hulladékkezelés [4]](image-url)
A mechanikai-biológiai hulladékkezelés egy olyan eljárás, amelynek célja a szilárd települési hulladékokból egy nagy fűtőértékű komponensekben (papír, fólia, textil, fa) gazdag, és egy nagy fűtőértékű komponensekben szegény frakció előállítása, ill. utóbbi olyan állapotba hozása, ami megfelel a lerakóba való elhelyezés feltételeinek [6, 10]. Ezzel az eljárással a kevert kommunális hulladékok és a szelektív hulladékgyűjtés után megmaradt frakciót szokták kezelni [4]. Az eljárás során a beérkező hulladékokat először aprítják, majd biostabilizálják, az így kapott anyagot pedig osztályozzák. A finom frakció (<50 mm) a biostabilít, a durva részből pedig további eljárásokkal RDF-et állítanak elő [6].

Hazánkban az egyik legnagyobb RDF felhasználó a Mátrai Erőmű Zrt., évente mintegy 37-45 ezer tonna RDF-et égetnek együtt az erőmű elsődleges tüzelőanyagának számító lignittel. További nagy ipari felhasználó a Duna-Dráva Cement Kft., a cég váci ill. beremendi gyárának éves összes RDF felhasználása körülbelül 49-58 ezer t/év [9].

2.2.2. Biofrakció

A maradék frakció jelentős részét alkotó szerves anyagok hasznosítására érdemes lenne nagyobb figyelmet fordítani (ezáltal is csökkentve a lerakóba kerülő hulladékok mennyiségét). Azonban ez a hulladék a szelektíven gyűjtött zöldhulladékoktól jóval heterogénebb összetételű, ahogy ez a 2. ábrán is látható. A biológiaiag lebomló mellett számos más hulladéktípus is megtalálható benne, sajnos akár veszélyes hulladékok (pl. elemek) is, figyelembe véve, hogy nem minden ember gyűjti ezeket felelőségteljesen. A szerves anyagok többnyire a kisebb, mint 50 mm-es szemcseméret-frakcióban találhatók, így osztályozással és szeparálási eljárásokkal a maradék hulladékból előállítható egy javarészt szerves anyagokat tartalmazó biofrakció [6].

2. ábra: A kísérleteim során alapanyagként alkalmazott biofrakció
Ez a biofrakció pedig már széles körben alkalmazható. Ennek egyik módja lehet az anaerob rothasztás. Dániában például a kommunális szilárd hulladékok szerves frakciójának anaerob kezelését többnyire más típusú szerves hulladékokkal, például szerves trágyával, szennyvíziszappal és ipari szerves hulladékkal együtt rothasztva végzik. A kommunális hulladékból származó biofrakció adagolása ezen a folyamatokba vonzó lehetőség, mivel nagyon értékes anyagról van szó: biogázpotenciálja egyes mezőgazdasági hulladékokének, például a szerves trágyáéknak tiszterese is lehet [11]. Egyéb eljárások is alkalmasak lehetnek ezen hulladéktípus hasznosítására. Dolgozatom középpontjában a pirolízis áll. Készültek már tanulmányok a kommunális hulladékok szerves frakciójának pirolizálhatóságára vonatkozóan, ezek fő irányvonalait a 4.2. fejezetben mutatom be.

3. Hulladék hasznosítás

A hulladékgazdálkodásról szóló törvény alapján hasznosításnak minősül „a hulladéknak, vagy valamely összetevőjének a termelésben vagy a szolgáltatásban történő felhasználása” [12]. A hulladékok anyagában történő hasznosításának alapvető feltétele a szelektív hulladékgyűjtés. Lehetséges ugyan a vegyesen gyűjtött hulladékból is az egyes hasznosítható hulladéktípusok kiválogatása, így azonban csak kisebb-nagyobb mértékben szennyezett anyagokhoz juthatunk, ami megnehezíti az újrahasznosítást [4]. A hasznosítási módok közül az újrafeldolgozás, azaz a hulladék anyagának ismételt felhasználása részesítendő előnyben, ennek hiányában végezhető energetikai hasznosítás [12].

3.1. Anyagában történő hasznosítás

Újrahasznosításnak nevezzük azt a folyamatot, amely során a hulladékot másodnyersanyagként hasznosítják, anyagában dolgozzák fel. Az anyagok újrafeldolgozásával elsődleges nyersanyagot takaríthatunk meg, ami környezeti szempontból kedvező. Ugyanakkor nem szabad elfelejteni, hogy újrafeldolgozás során is elkerülhetetlen bizonyos fokig a környezetszennyezés, ezért áll az újrahasznosítás a hulladékhierarchia 3. lépcsőfokán, a megelőzés és az újrahasználat mögött [13].

A legtöbbféle újrahasznosított termék műanyag hulladékból készül. Magyarországon a lakosság által szelektíven gyűjtött hulladékból készül többek között számos kertészeti termék (pl. karó, vödör), iparban használt csövek, zsákok, fóliák és sok esetben a fekvőrendőrök is. A hulladék üvegből készülhet újra üveg, vagy azsulfalthoz keverve adalékként is felhasználható. A
fémhulladékok döntő részét a vas és az alumínium teszik ki. Vashulladékból főként az iparnak készülnek alapanyagok, alkatrészek. Az alumíniumhoz kapcsolódó érdekkesség, hogy Magyarországon készülnek a londoni metró szellőzőrendszerének ventilátor lapátjai, összegyűjtött sörösdobozokból [13]. Az elhasznált gumiabroncsokat többnyire gumiőrleményként hasznosítják. Az őrlemény felhasználási területe széleskörű. Rugalmassága, kopásállósága és csúszásmentes tulajdonsága alkalmassá teszi kerékpárutak, belső utak, játszótéri és sportpályaburkolatok elkészítésére is. A hulladékpapír elsődleges felhasználója a papírüzem (azon belül is a csomagolóanyag- és hullámlemezgyártás) [14].

Ugyanakkor a hulladékok újrahasznosításának vannak korlátai. Egyrészt bizonyos tulajdonságok gátolják a hulladék anyagában történő hasznosítását (pl. fertőző hulladék), vagy nincs kidolgozott, gazdaságos technológia rá. Másrészt a hasznosítási ciklusok is korlátozottak. Például a papír többszöri újrahasznosítása által a cellulózrostok hossza annyira lerövidül, hogy alkalmatlanná válik újabb papír előállításra [4].

3.2. Energetikai hasznosítás

Ebben a fejezetben a termikus eljárásként főbb irányvonalait mutatom be. Ezek közül a pirolízis folyamatát részletesebben tárgyalom, mivel kisérleteim is ehhez az eljárásokhoz kapcsolódtak.

3.2.1. Égetés

Az égetés az egyik legrégebben alkalmazott termikus kezelési eljárás, amely során a hulladékok szervesanyagtartalma aerob körülmények között gázokká és vízzé alakul át, az éghetetlen szervetlen anyagok pedig a salakban és a pernyében halmozódnak fel [4].

A legelterjedtebb tüzelőberendezések kialakításuk szerint a rostélytűzelésű, forgódobos ill. fluidágyas égetők [15].

A rostélyos égető feladatai közé tartozik a tüzelőanyag rétegeinek lazítása, forgatása, és a gyorsabban bomló komponensek eltávolítása a rács lyukain keresztül. A rostélytűzelésű berendezések lehetővé teszik a hulladék szárítását, begyűjtését, az égési folyamat megfelelően
szabályozható, ez a tartózkodási idő és a légfelesleg tényező változtatásával valósítható meg [15].

A hengerrostély egy lassan forgó, vízszintes tengelyű, enyhén megdöntött, hőálló falazattal bélelt dobszitának tekinthető. A forgó mozgás segíti a hulladék és az égési levegő keveredését, ezáltal gyorsabb és egyenletesebb égés érhető el [15].

A fluidágyas égetők egy henger alakú, tartórostélyon elhelyezett finom szemcsés ömlesztett anyagból álló rétegből épülnek fel. A fluidizáló anyagot a kemencébe bevezetett nagy mennyiségű légáram (égéslevegő és visszacirkuláltott füstgáz) mozgatja, lebegteti és forgatja. Az elégetendő anyag részben keveredik a fluidummal, részben a fluidágyra esik. A hulladék bomlással és kigázosodási reakciókkal illóvá válik, majd gyorsan kiég [15].

Az eljárásnak számos előnye van:

- A technológia alkalmazásával villamosenergia, illetve hő állítható elő a hulladékból.
- Fosszilis energiahordozó-felhasználást vált ki, és csökkenti a lerakóba kerülő hulladékmennyiséget [16].
- Magas hőmérsékleten a kórokozók elpusztulnak, az éghető karcinogének, toxikus vagy biológialag aktiv szerves anyagok elbomlanak.
- Az égetés maradékanyságai többnyire kis oldhatóságúak, így a környezeti kockázat csökken deponáláshoz képest [8].

A hulladékégetés illeszkedik az Európai Unió energiapolitikába. Ezt tükrözi az is, hogy az Európai Unió a hulladékégetőkben termelt energia 50%-át megújuló forrásból származó energiának tekinti [16].

A kommunális hulladékok összetételének és mennyiségének folyamatos változása jelentősen megnehezíti a felhasználást. A hatékonyabb energiatermelés érdekében érdemes a kevert összetételű települési hulladék helyett a magasabb fűtőértékű, kiszámíthatóbb RDF-et égetni.

Hazánkban az RDF felhasználók alapvetően két nagy csoportra bonthatók:

- Az egyikbe azon fogyasztók tartoznak, akiknél az RDF valamilyen drága, magas használati értékű tüzelőanyagot vált ki. Ide sorolhatók a cementgyárak, illetve némelyik erőmű és fűtőmű is, ahol a jellemző tüzelőanyag földgáz, esetleg köszén, koksz, stb.
- A másik csoport azon létesítményeket foglalja magába, amelyeknél az RDF alternatívájaként olesz, könnyen hozzáérhető tüzelőanyag áll rendelkezésre. Ilyen létesítmény Magyarországon a Mátrai Erőmű, ahol a kibányászott lignit beszerzési költsége még kellően alacsony, így az erőműnek nem fűződik valós gazdasági érdeke az RDF hasznosításához [9].
Habár még ma is az égetés a legelterjedtebb “Waste to Energy” eljárás, egyre népszerűbbek a hulladékok termikus bontási eljárásai is. A pirolízis és az elgázosítás számos előnyel bírnak az égetéssel szemben (kevesebb légnemű emisszió, kevesebb maradékanyag, könnyebben elvégezhető a szennyezők szabályozása, az üzemek modulárisak, nagyobb hozzáadott értékű terméket állítanak elő, stb.) [8].

3.2.2. Elgázosítás

Az elgázosítást már több, mint egy évszázada alkalmazzák üzemanyagok, vegyi anyagok előállítására. Előnyei közel tartozik, hogy:

- termékei felhasználhatók villamos energiatermelésre, vagy vegyipari alapanyagként,
- számos különböző anyag (szén, petrokkoksz, finomítói hulladék, szénhidrogénekkel szennyezett talaj, mezőgazdasági hulladék, stb.) feldolgozható ezzel a technológiával,
- szennyezőanyagoktól mentes, tiszta szintézisgáz állítható elő,
- a szintézisgáz további vegyipari nyersanyagként használható fel (metanol, FT benzin, stb.),
- hulladékokból értékesíthető termék állítható elő,
- csökken a lerakóba kerülő hulladékok mennyisége [17].

Az elgázosítás magasabb hőfokon zajlik, mint a pirolízis. Hátránya, hogy a keletkező gáz fűtőértéke a földgáznál alacsonyabb. Bár környezeti hatásai kisebbek, mint az égetés esetében, energiatermelés szempontjából sajnos kedvezőtlenebb. Ugyanakkor az újabb fejlesztések már kombinálják a hőbontást és a keletkező termékek elégetését. Az így keletkező nagy hőmérsékletű füstgáz energetikai célokat, a szintézisgáz és az üvegszerű salakolvadék vegyipari nyersanyagként hasznosítható. A kombinált eljárások jobb környezeti paraméterekkel rendelkeznek, mint az égetés [4].

3.2.3. Pirolízis

Pirolízisnek vagy hőbontásnak nevezzük a szerves anyagú hulladékok megfelelően kialakított reaktorban, hő hatására, oxigénszegény vagy –mentes közegben, szabályozott körülmények között bekövetkező kémiai lebontását. Az eljárás során pirolízis gáz, folyékony termék és pirolíziskoksz keletkezik. Ezek összetételel, arányát és mennyiségét befolyásolják a hulladék összetétele és a reaktor üzemi viszonyai. A végtermékek energiahordozóként (fütőgáz,
túzelőolaj, koksz), vegyipari másodnyersanyagként és esetenként egyéb célokra (pl. talajjavítás) hasznosíthatók [18].

A reaktorok lehetnek közvetett és közvetlen fűtési kialakításúak. Utóbbi esetében a pirolízis és a hőenergiát szolgáltató parciális égés közös térben megy végbe. A legjobb hőátadási viszonyok ezzel a fűtési módszerrel érhetők el, viszont ilyenkor megnő a gáztermékek szén-dioxid, víz és nitrogén-oxid tartalma és körülményesebb a folyamatszabályozás is. A közvetett fűtésűnél a hőközlés történhet a reaktorfalon keresztül. Ez azonban egyrészt rossz hatásfokú, másrészt az ilyen reaktorok érzékenyek a tűzálló falazat minőségére. Mindemellett előnyük, hogy egyszerűen üzemeltethetők és jól szabályozhatók. A másik közvetett fűtési megoldás cirkuláris közeg segítségével történik. Ez jó hatásfokú, ellenben bonyolultabb az üzemeltetése [8].

A hőbontás legnagyobb előnye, hogy termékei értékesíthetők, továbbá légszennyezése kisebb, mint az égetésé. Hátránya ugyanakkor a fokozott anyagelőkészítési igény, valamint, hogy a gáztisztítás összetettebb és komplikáltabb, emellett a keletkezett, többnyire erősen szennyezett mosóvizet is komplex módon tisztítani kell [8].

A pirolízis hőmérséklete alapján megkülönböztetünk kis- és középhőmérsékletű (450-600 °C), nagyhőmérsékletű (800-1100 °C) és nagyhőmérsékletű salakolvasztásos (>1200 °C) eljárásokat. A termikus hőbontás során döntő szerepet játszanak a kémiai átalakulás reakciófeltételei: a hőmérséklet, felfűtési és tartózkodási idő, szemcse- ill. darabnagyság, és a keveredés mértéke, hatékonysága [19].

4. RDF és biofrakció pirolizálásának áttekintése

Jelen fejezetben egyes, az általam vizsgált hulladékfajták pirolizálására vonatkozó előzetes kutatási irányvonalakat szeretném bemutatni.

4.1. RDF pirolizálás

Japánban már több, mint 25 éve folynak kísérletek az RDF hasznosításával kapcsolatban. A Kawasaki Steel cégénél RDF elszenesítésével kísérleteztek, a terméket RDF-C-vel jelölték. Az első kísérletek laboratóriumi körülmények között zajlottak. Majd a kapott eredmények alapján
úgy döntöttek, hogy üzemi próbát végeznek egy szinterező üzemben. A nagyobb méretű további sikeres kíséreltekre alapozva építettek egy 1,25 t/h kapacitású kísérleti üzemet a Mizushima műveknél. A kidolgozott technológiában minimális mennyiségű fosszilis tüzelőanyagot használtak. Az utóégető felfütése olajjal történt, ezt követően a pirolízisgázok elégetésével biztosították az üzemi hőmérsékletet. A keletkező RDF-C-t először a vasgyártásban alkalmazták kokszhelyettesítésére. Emellett az RDF-C jó adszorpciós tulajdonságokkal rendelkezik, így aktív szén helyettesítésére is alkalmas lehet [20].

Különböző katalizátorok alkalmazásával nagymértékben befolyásolható a pirolízis folyamata. Miskolczi és társai Malajziából származó RDF minták kétlépcsős termokatalitikus pirolizálásával kapcsolatban végeztek kísérelteket [21]. Az alapanyag 59,8% műanyagot, 33,7% papírt és 6,5% egyéb hulladékt (rizs szár, fa, háztartási hulladék) tartalmazott. Vizsgálták különböző katalizátorok (Y-zeolit, ZSM-5, Ni-Mo, Co-Mo stb.) hozzáadásának hatását a folyamatra. Megfigyelték, hogy a gáztermelés a katalizátormentes esetben 350%-kal nőtt, ha a ZSM-5 alkalmazásakor. Y-zeolit hozzáadásával a pirolízis olaj mennyiségét sikerült megötvölni 115%-kal. Azonban a katalizátorok nem csupán a termékek kihozatalára voltak hatással, hanem azok összetételére is. Az oxigéntartalmú vegyületek, a víz, a kén, a nitrogén és a klór koncentrációját az olajokban csökkenteni lehet Ni-Mo és Co-Mo-katalizátorokkal. Whyte és társai viszonylag olcsó és ugyanakkor hatékony katalizátor keresését tűzték ki célul [22]. Olyan katalizátorokat vizsgáltak, amelyek alkalmazásával növelni lehet az RDF pirolizálásakor keletkező olaj mennyiségét sikerült megötvölni 115%-kal. Azonban a katalizátorok nem csupán a termékek kihozatalára voltak hatással, hanem azok összetételére is. Az oxigéntartalmú vegyületek, a víz, a kén, a nitrogén és a klór koncentrációját az olajokban csökkenteni lehet Ni-Mo és Co-Mo-katalizátorokkal. Whyte és társai viszonylag olcsó és ugyanakkor hatékony katalizátor keresését tűzték ki célul [22]. Olyan katalizátorokat vizsgáltak, amelyek alkalmazásával növelni lehet az RDF pirolizálásakor keletkező olaj mennyiségét. A vizsgált anyagok között volt regenerált ZSM-5, RDF pirolizálásából származó salak és osztriga kagylóhaj. Mindhárom katalizátor jelenléte hatással volt a folyékony pirolízis kísérőhez összetételére, jelentősen csökkent azok kátránnyegysége. A keletkező pirolízisolaj mennyisége közel másfél treszeresére nőtt.

4.2. Biofrakció pirolizálás

Számos országban, ahol a kommunális hulladékok jelentős része még mindig lekerül vagy hulladékégetőbe kerül. Olaszországban például közel 29 millió tonna települési szilárd hulladék keletkezik évente, aminek körülbelül 30-40%-a biológiailag lebomló. Az égetés illetve a lerakás mellett felmerülhet lehetőségként a komposztálás vagy az anaerob lebontás is (amiket környezetkímélőbb megoldásnak tartanak). Azonban ezen eljárások rendkívül időigényesek.
Továbbá a komposztálás nagy energiafelhasználással és CO₂ kibocsátással jár, emellett a termékek piaci értéke is alacsony [23].

3. ábra: Pirolízáló üzem, Egyesült Királyság

A keletkező koksz égetéséből származó hőt a pirolizáló reaktor fűtésénél hasznosították, a folyékony és gáz halmazállapotú termékek felhasználásával pedig hő- és villamosenergiát termeltek. Végül arra a megállapításra jutottak, hogy a technológia igéretesnek tűnik, azonban a technológia fejlesztőinek törekedniük kell az energiatermelés költségeinek csökkentésére, hogy a projekt gazdaságilag életképes maradhasson.
5. Kísérleti rendszer kialakítása

Pirolizációs kísérleteimet a Miskolci Egyetem Műszaki Anyagtudományi Kar Energia és Minőségügyi Intézet Tüzeléstani és Hőenergia Intézeti Tanszékének Tüzelőanyag-vizsgáló laboratóriumában végeztem.

5.1. Kísérleti rendszer felépítése

A kísérleteinkhez használt berendezés sematikus ábrája a 4. ábrán látható. A kísérletek során két, legfeljebb 900 °C-ra fűthető csőkemencét alkalmaztunk.

4. ábra: A kísérleti rendszer sematikus ábrája

A berendezésben reaktorként egy 30 mm külső átmérőjű hőálló acélcső szolgál, ami keresztül húzódik a két kemencén. A cső egyik vége zárt, a másik egy folyadékgyűjtő edényhez
csatlakozik. A keletkező gáz innen egy vattával és aktiv szennél töltött gázszűrőn keresztül jut el a rotaméterekig. A gáz a folyamat végén elégetésre kerül.

A reaktorcső kemencéken kívül eső szakaszait minden mérés előtt INSULFRAX kerámia paplannal leszigeteltük annak érdekében, hogy a hőveszteséget minimálisra csökkentsük, illetve, hogy megakadályozzuk a hő átterjedését egyik kemencéből a másikba.

5.2. Mérőkör kialakítása

Annak érdekében, hogy a hőmérsékletváltozást pontosabban nyomon tudjuk követni a reaktorcső mentén, K-típusú hőelemeket helyeztünk el a reaktorcső különböző pontjain. A K-típusú hőelemeket NiCr és Ni huzalok alkotják, -200…1200 °C-os hőmérséklet tartományban alkalmazhatók [26]. A termoelemeket egy automata hőmérsékletrögzítőhöz csatlakoztattuk, ami percenként rögzítette az adatokat.

A képződő gáz térfogatáramának változását Medingen gyártmányú rotaméterek (3-30 és 20-260 L/h) segítségével mértük. A rotaméterek, vagy más néven lebegőtestes áramlásmérők egy üvegcsonból állnak, amelyben egy szabadon elmozduló, kúp alakú úszó mozog. A csőben az úszó emelkedését a közeg áramlásának erőssége határozza meg, így a közegáram leolvasható a mérőcső oldalán lévő skáláról [27].

Az egyik alkalmazott gázkromatográf egy automatikus mintavételezésre alkalmas Agilent 490 Micro GC típusú készülék. A másik egy DANI 500 típusú kromatográf, ami az Agilent 490 Micro GC által mért összetevőkön túl, további szénhidrogének és kén-hidrogén mérésére is alkalmas [29, 30].

A DANI 500 esetén kézi mintavételezésre volt szükség. Ehhez 2 db 50 mL-es fecs kendőt, egy háromjáratú infúziós elzárócsapot és egy 25G méretű szárnyastűt használtunk. A szárnyastűt a mintavételi csőhöz csatlakoztattuk. Első lépésként az öblítő fecs kendőt töltöttük fel mintával,
miközben a csap mindhárom irányba nyitva volt. Így átöblítettük a mintavevő vezetéket és a csapot. Majd lezártuk az öblítő fecs kendőt és feltöltöttük a mintatárolót. A mintatároló
fecs kendőt lezártuk, majd leválasztottuk, és az így kapott mintát a DANI 500 kromatográf fel
elemez tük.
Az alapanyagok és a szilárd termék elemi összetételének meghatározásához egy Carlo Erba
bombakaloriméterrel segítségével történt.
A mintát nedvességtartalmának meghatározását egy Mettler Toledo HB43-S típusú
nedvesség mérő készülékkel végeztük el.
Az alapanyagok és a keletkező salakok hamutartalmának meghatározása 550 ± 15 °C-on
tömegállandóságig történő hevítéssel az MSZ EN 14775:2010 szabvány alapján történt.

6. Kísérleti eredmények

6.1. Kísérletek bemutatása

Az első kísérleteket még egy kemencével végeztük, de a fűtött hossz nem biztosított elegendő
tartózkodási időt a komponensek megfelelő elbomlásához, így a gázképződés lassú és
minimális mértékű volt. A második kemence beiktatásával megnöveltük a fűtött szakaszt, így
a képződő szénhidrogének a megnövekedett úthossznak köszönhetően már el tudtak bomlani
kisebb, gáz halmazállapotú szénhidrogéneké.
A második kemence beiktatása után (5. ábra) a kemencéket először 600 °C-ra állítottuk be, 600
°C/h felfűtési sebességgel, de még ekkor sem volt megfelelő mértékű a gázképződés. Így
meglöveltük a hőmérsékletet 700 °C-ra. Az alapanyaggal töltött kemence fűtése akkor indult
el, amikor a második kemence elérté a célhőmérsékletet.
Az alapanyagokat az első kemence által fűtött csőszakaszba töltöttük, kísérletenként 30g-ot használtunk fel. Alapanyagaink kommunális hulladékból származó RDF és biofrakció, illetve ezek keveréke (34% RDF + 66% biofrakció). Az alapanyagokat nem szárítottuk, nedvességtartalmukat minden mérés előtt meghatároztuk.

6.2. Alapanyag elemzés

A vizsgált RDF és biofrakció mintákból a Miskolci Egyetem Műszaki Földtudományi Karának Nyersanyagelőkészítési és Környezeti Eljárástechnikai intézetében készítettek pelleteket. Ezeket a pelleteket szemlélteti a 6. ábra.
Pirolízis során a kiinduló anyag kulcsfontosságú szerepet játszik a végtermék kialakulásában. Az alapanyagok eleme összetétel, nedvesség- ill. hamutartalom vizsgálatának eredményeit az 1. táblázat szemlélteit. Látható, hogy a biofrakció karbontartalma jelentősen kisebb, mint a vizsgált RDF mintáré. Emellett hamutartalma is kiugróan magas, de a keverék is számottevően többet tartalmaz, mint a vizsgált RDF minta. A legnagyobb nedvesség tartalma is a biofrakció és figyelhető meg. Ezeket figyelembe véve az RDF-ből várható a legtöbb gáztermelés.

1. táblázat: A minták összetétele

<table>
<thead>
<tr>
<th></th>
<th>Száraz állapotban [m/m%]</th>
<th>Nedvesség tartalom [m/m%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>C</td>
</tr>
<tr>
<td>RDF</td>
<td>1,33</td>
<td>49,44</td>
</tr>
<tr>
<td>Biofrakció</td>
<td>1,59</td>
<td>24,09</td>
</tr>
<tr>
<td>Keverék</td>
<td>1,33</td>
<td>38,16</td>
</tr>
</tbody>
</table>

Már számos kutatás igazolta, hogy a kéntartalom döntően befolyásolja bármely pirolízis termék további felhasználhatóságát [31]. A vizsgált alapanyagokban lévő kén mennyisége kicsi, a szintézisgázban megjelenő kén tartalmú komponensek határozzák majd meg, hogy ez esetlegesen problémát jelenthet-e a szintézisgáz további felhasználása során. A kén jelenléte előre vetítheti kén-hidrogén illetve kén-dioxid eltávolításának szükségsességét is a szintézisgázlból, ami jelentősen megövelheti a technológia költségét. Ugyanakkor a keverék 0,17%-os kéntartalma nem reális, tekintve, hogy 0,42-0,51%-os kéntartalommal rendelkező anyagok alkoják. A mérés pontatlansága valószínűsíthetően az alapanyagok heterogenitására
és alapjában véve kis koncentrációjára vezethető vissza, amelyben a kén tartalom, a karbonnal és más összetevőkkel ellentétben nagy koncentráció eltéréseken jelentkezhet.

Az alapanyagok égésőjére és fűtőértékére vonatkozó adatokat a 2. táblázat foglalja össze. A kapott adatokat elemezve megállapítható, hogy a különböző alapanyagokból előállított pelletek száraz mintára vonatkoztatott égésője 9,11 és 22,42 MJ/kg, fűtőértéke 8,51 és 21,03 MJ/kg között változott.

2. táblázat: A minták égésője és fűtőértéke, száraz mintára vonatkoztatva

<table>
<thead>
<tr>
<th>Alapanyag</th>
<th>Égéső, [MJ/kg]</th>
<th>Fűtőérték, [MJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDF</td>
<td>22,42</td>
<td>21,03</td>
</tr>
<tr>
<td>Biofrakció</td>
<td>9,11</td>
<td>8,51</td>
</tr>
<tr>
<td>Keverék</td>
<td>14,99</td>
<td>13,95</td>
</tr>
</tbody>
</table>

A vizsgálatok alapján a legnagyobb égésővel a vizsgált RDF rendelkezik, ettől a biofrakció jelentősen elmarad. Mindemellett figyelmeztetve véve, hogy a biofrakció kezdeti nedvességtartalma közel kétszerese az RDF-énk, az eredeti mintákra vonatkoztatott égéső és fűtőérték adatok között a különbségek még szignifikánsabbak.

6.3. Alapanyag konverzió

Az eljárás paraméterei és kiinduló anyaga kulcsfontosságú szerepet játszanak a végtermék kialakulásában. A különböző paraméterek közül is különösen fontos a hőmérséklet és a felfűtési sebesség. Szakirodalomban található eredmények alapján [32], a felfűtési sebesség növelésével egyúttal növelhető a folyékony termék kihozatala, lassú pirolízis során a szilárd termék hozama nő. Esetemben a fő termék a szintezisgáz volt. Gáz terméknél a kihozatalt sokkal inkább a hőmérséklet határozta meg, mint a felfűtési sebesség. Minél nagyobb a hőmérséklet, annál nagyobb lesz a termelt szintezisgáz mennyisége is, egy bizonyos mértékig. Korábban említésre került, hogy a kísérlet sorozat kezdetén, a pirolizálási hőmérsékletet 600 °C-ra állítottuk be. Azonban az eredmények alapján, ez a beállított hőmérséklet túlságosan alacsony volt a szintezisgáz termelődésének szempontjából. Ezt okozhatja több kísérleti paraméter is, mint a rendszer hőkapacitása a kísérleti minta méretéhez képest vagy akár a pirolízis lefutási idejének rövid időtartama is. Az általam vizsgált anyagok meghatározott körülmények közötti pirolízise során bekövetkező konverziójára a 7. ábrán látható módon alakult.
A legnagyobb arányú átalakulás az RDF pirolizálásakor következett be. Száraz alapanyag tömegére vonatkozott, annak 61,73%-a gázzá alakult. A biofrakció esetén ez az érték jóval kisebb, csupán 35,69%. A keverék esetében ez az arány egy köztes érték, 47,38%. A folyadék fázis mindhárom anyag esetében csekély mennyiségű volt. Az itt látható eredményekből, azonban nem vonhatunk le következtetéseket a pirolizáláskor végbemenő bomlási reakciókra vonatkozóan, mivel az itt feltüntetett alapanyagok karbon és hamutartalma nagyon eltérő.

6.4. Gázhalmazállapotú termékek elemzése

A különböző alapanyagokhoz tartozó kumulatív gáztermelés görbéket mutatja be a 8. ábra. A görbékhez tartozó adatpontok 3-3 mérés átlagát mutatják. Ezek alapján látható, hogy a termelt gáz mennyiségében jelentős különbségek figyelhetők meg. Az eredmények alapján megállapítható, hogy a vizsgált biofrakció pirolizálásával termelhető szintézisgáz mennyiség alig több, mint az RDF-ből nyerhető gázmennyiség harmada.
A 9. ábra szemlélteti a reaktorcsövön K-típusú hőelemekkel mért T_1, T_2, T_3 és T_4 hőmérsékleteket.

A gázkromatográfias mérések eredményeit és a szintézisgáz térfogatáramára, illetve a reaktor hőmérsékletváltozására vonatkozó adatokat a 10-12. ábrák szemléltetik. Ezek az ábrák 1-1 mérés eredményeit mutatják be.
Látható, hogy az RDF pirolizálásakor a gáztermelés megközelítőleg 45 percig tartott (10. ábra). Abban az időintervallumban, amikor a legnagyobb mennyiségű szintézisgáz termelődött, annak fő alkotói CO₂, CO és CH₄ voltak, utóbbi a térfogatáram növekedésével kezdett jelentősen emelkedni. A gáztermelés maximumának elérésekor nem történt kézi mintavételezés (DANI kromatográfőr végzett elemzéshez) látható, hogy a gázban lévő etán és etén mennyiségére vonatkozó adatok csökkentő tendenciát mutatnak, így feltételezhető, hogy jelentős mennyiségben voltak jelen a szintézisgázban (Agilent MicroGC 490-es kromatográffal ezen komponensek nem kimutathatóak) akkor is, amikor annak termelődése a legintenzívebb volt.

10. ábra: A szintézisgáz összetétele, térerzatáram és a hőmérséklet alakulása (RDF)
A gáztermelődés kezdetekor az alapanyaggal töltött kemence hőmérséklete \((T_2)\) 300 °C körüli volt, a legnagyobb mennyiségű gázképződés idején pedig már elérte az 500 °C-ot.

A biofrakció pirolizálásakor (11. ábra) a gáztermelődés megközelítőleg mindössze 25 percig tartott. Rövid idő alatt elkezdett csökkenni a szintézisgáz mennyisége, így amikor a szénhidrogének aránya nőni kezdett, már csekély mértékű volt a gáztermelés.

\[\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Összetétel, V/V}\% & \text{Eltelt idő, perc} \\
\hline
\text{C}_2\text{H}_4 & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text{C}_2\text{H}_6 & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text{CO}_2 & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text{CH}_4 & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text{CO} & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text{O}_2 & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\text{H}_2 & 0 & 15 & 30 & 45 & 60 & 75 & 90 \\
\hline
\end{array}\]

\[\begin{array}{|c|c|c|c|c|}
\hline
\text{Biofrakció} & \text{Hőmérséklet, °C} & \text{Térfogatáram, dm}^3/\text{kg} \\
\hline
\text{T}_1 & 0 & 15 & 30 & 45 & 60 & 75 & 90 & 0 & 12 \\
\text{T}_2 & 0 & 15 & 30 & 45 & 60 & 75 & 90 & 0 & 10 \\
\text{T}_3 & 0 & 15 & 30 & 45 & 60 & 75 & 90 & 0 & 8 \\
\text{T}_4 & 0 & 15 & 30 & 45 & 60 & 75 & 90 & 0 & 6 \\
\hline
\text{Térfogatáram} & 0 & 15 & 30 & 45 & 60 & 75 & 90 & 0 & 4 \\
\hline
\end{array}\]

11. ábra: A szintézisgáz összetétele, térfogatárama és a hőmérséklet alakulása (biofrakció)

Ennél az alapanyagnál a gázképződés kezdetén az első kemence hőmérséklete már meghaladta a 600 °C-ot.
Az RDF-ből és biofrakciókból álló keverék szintézisgázára vonatkozó adatokat a 12. ábra mutatja be. Látható, hogy kevesebb gáz termelődik, mint az RDF pirolizálásakor, ugyanakkor hosszabb ideig tart és egyenletesebb a gáztermelődés, mint a biofrakciónál.

12. ábra: A szintézisgáz összetétele, térfogatárama és a hőmérséklet alakulása (keverék)

A hidrogén koncentrációja mindhárom kiindulóanyag pirolizálása során a gáztermelés beindulását követően folyamatosan növekvő tendenciát mutat, a kisérlet leállításáig. A kezdeti gázösszetételekben megjelenő oxigén koncentráció, a beadagolás során a reaktorban maradt
levégből származik. Jól láthatóan, mindhárom esetben a reaktor hőmérsékletének emelkedésével és a pirolizálási reakciók beindulásával folyamatosan csökken. A kapott eredmények azt mutatják, hogy az RDF pirolizálásakor elegendő volt alacsonyabb hőmérséklet (300 °C), hogy elkezdődjön a gáztermelés. A keverék és a biofrakció esetében ez az érték már el kellett, hogy érje az 500-600 °C-ot. A szintézisgáz termelés időtartama az RDF és a keverék pirolizálásakor hasonlóan alakult, körülbélül 40-45 percig tartott, azonban a biofrakció hőbontásakor jóval rövidebb idő alatt (~25 perc) lezajlott. A gázkromatográfiás mérések alapján a szénhidrogének aránya az RDF szintézisgázában a legnagyobb, a biofrakció esetében pedig a legkisebb.

6.5. Szilárd és folyadék halmazállapotú termékek elemzése

A maradékanyagok CHNS vizsgálatának eredményeit mutatja be a 13. ábra. Az elemi összetétel vizsgálatok és a maradékanyagok tömegkihozatal adatai alapján külön-külön kiszámítottam a salakokban és kátrányokban lévő elemek tömegét. Majd a kapott értékeket elosztottam a száraz alapanyagban eredetileg jelen lévő összetevők tömegével. Így kaptam meg az ábrán látható tömegszázalékos adatokat.

![13. ábra](image-url)

13. ábra: Az összetevők aránya a maradékanyagokban, az alapanyagban lévő mennyiségekre vonatkoztatva

A számunkra legérdekesebb összetevő, a karbon hasonló arányban alakult át mindhárom alapanyag esetében. Jelentős különbségek a kéntartalom alakulásában figyelhetők meg. Azonban fontos megjegyezni, hogy a salak és kátrány mintáknál mért értékek szórása
esetenként egészen nagy volt. Ennek legfőbb oka, hogy az alapanyagok nem homogének, így a maradékkanyagok is változó paraméterekkel bírnak.

A maradékkanyagokban lévő összetevők százalékos mennyiségét kivonva 100%-ból következtettem a gázzá átalakult komponensek arányára. Ezt mutatja be a 14. ábra.

Megfigyelhető, hogy a kezdeti karbontartalom 58-67%-a átalakult mindhárom esetben. Ebből arra lehet következtetni, hogy mindhárom alapanyagban hasonló módon vége ment a pirolízis és a kezdeti karbon mennyisége szinte ugyanolyan arányban alakult szintézisgázzá. Az egyes alapanyagok esetében a termelt gáz mennyiségét a kezdeti karbontartalom határozta meg.

A biofrakció és a keverék értékei hasonlóan alakultak, a kéntartalomtól eltekintve. A keverékben eredetileg jelen lévő kéntartalom jóval kisebb arányban alakult át, mint a másik két anyag esetében. Ugyanakkor a DANI 500 gázkromatográf nem mutatott ki kén-hidrogént egyik szintézisgázból sem. Ennek több magyarázata is lehet. Előfordulhat, hogy képződött kén-hidrogén, de mennyisége a kromatográf mérései koncentrációjának határértéke alatt (200 ppm) volt. Valószínűleg többnyire kén-dioxid formájában a szintézisgázba került, vagy a hamuban maradt kötött formában. A száraz alapanyag hidrogéntartalma mindhárom kiindulóanyag esetben nagy mértékben a szintézisgázban jelent meg, szabad hidrogén formájában, amely a szintézisgáz összetételének vizsgálatából is jól látható.

14. ábra: A gázzá alakult komponensek aránya

Megfigyelhető, hogy a kezdeti karbontartalom 58-67%-a átalakult mindhárom esetben. Ebből arra lehet következtetni, hogy mindhárom alapanyagban hasonló módon vége ment a pirolízis és a kezdeti karbon mennyisége szinte ugyanolyan arányban alakult szintézisgázzá. Az egyes alapanyagok esetében a termelt gáz mennyiségét a kezdeti karbontartalom határozta meg.

A biofrakció és a keverék értékei hasonlóan alakultak, a kéntartalomtól eltekintve. A keverékben eredetileg jelen lévő kéntartalom jóval kisebb arányban alakult át, mint a másik két anyag esetében. Ugyanakkor a DANI 500 gázkromatográf nem mutatott ki kén-hidrogént egyik szintézisgázból sem. Ennek több magyarázata is lehet. Előfordulhat, hogy képződött kén-hidrogén, de mennyisége a kromatográf mérései koncentrációjának határértéke alatt (200 ppm) volt. Valószínűleg többnyire kén-dioxid formájában a szintézisgázba került, vagy a hamuban maradt kötött formában. A száraz alapanyag hidrogéntartalma mindhárom kiindulóanyag esetben nagy mértékben a szintézisgázban jelent meg, szabad hidrogén formájában, amely a szintézisgáz összetételének vizsgálatából is jól látható.
7. Összefoglalás

Laboratóriumi kísérleteim során kommunális hulladékból származó RDF, biofrakció és ezen anyagok keverékének pirolízisét vizsgáltam 700 °C-on. Az eljárás paraméterei és kiinduló anyaga kulcsfontosságú szerepet játszanak a végtermék kialakulásában, ezért ezek vizsgálata állt dolgozatom középpontjában.

Felhasznált irodalom

Köszönetnyilvánítás
